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(57) ABSTRACT

A device receives program code, and receives size/type infor-
mation associated with inputs to the program code. The
device determines, prior to execution of the program code and
based on the input size/type information, a portion of the
program code that is executable by a graphical processing
unit (GPU), and determines, prior to execution of the program
code and based on the input size/type information, a portion
of'the program code that is executable by a central processing
unit (CPU). The device compiles the GPU-executable portion
of the program code to create a compiled GPU-executable
portion of the program code, and compiles the CPU-execut-
able portion of the program code to create a compiled CPU-
executable portion of the program code. The device provides,
to the GPU for execution, the compiled GPU-executable por-
tion of the program code, and provides, to the CPU for execu-
tion, the compiled CPU-executable portion of the program
code.

20 Claims, 10 Drawing Sheets
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1
IDENTIFICATION AND TRANSLATION OF
PROGRAM CODE EXECUTABLE BY A
GRAPHICAL PROCESSING UNIT (GPU)

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/894,479, filed Sep. 30, 2010 (now U.S. Pat.
No. 8,769,510), and claims priority under 35 U.S.C. §119
based on U.S. Provisional Patent Application No. 61/322,
087, filed Apr. 8,2010, the entire contents of which are hereby
incorporated by reference. This application is also related to
U.S. patent application Ser. No. 12/894,544, (now U.S. Pat.
No. 8,533,697), entitled “GRAPHICAL PROCESSING
UNIT (GPU) ARRAYS,” filed Sep. 30, 2010, the disclosure
of which is incorporated by reference herein in its entirety.
This application is further related to U.S. patent application
Ser. No. 12/894,547 (now U.S. Pat. No. 8,547,500), entitled
“SAVING AND LOADING GRAPHICAL PROCESSING
UNIT (GPU) ARRAYS,” filed Sep. 30, 2010, the disclosure
of which is incorporated by reference herein in its entirety.

BACKGROUND

Graphical processing units (GPUs) provide high computa-
tion capabilities at lower prices than comparable central pro-
cessing units (CPUs). For example, one particular GPU can
compute one trillion floating point operations in a single
second (i.e., one teraflop). GPUs may be provided in a variety
of devices (e.g., desktop computers) and/or systems (e.g., a
high performance computing center) to provide improved
numerical performance.

A GPU may include a number of characteristics. For
example, a GPU may include many vector processing ele-
ments (e.g., cores) operating in parallel, where each vector
core addresses a separate on-device memory. There is high
memory bandwidth between the on-device memories and the
vector cores, and memory latency is relatively large (e.g.,
four-hundred clock cycles). A GPU may provide zero over-
head thread scheduling (e.g., which enables algorithms with
high thread counts); however, the GPU may include limited
support for communications between threads. A relatively
low memory bandwidth is provided between the GPU’s
device memory and host memory. A GPU also provides lim-
ited support for general-purpose programming constructs
(e.g., code executing on the GPU cannot allocate memory
itself, this must be accomplished by a host CPU).

These characteristics mean that programming for the GPU
is not straightforward and highly parallel algorithms need to
be created for the GPU. A typical high-level program will be
hosted on a CPU that invokes computational kernels on the
GPU in a sequence to achieve a result. Because of the rela-
tively low bandwidth available to transfer data to and from the
GPU’s own memory, efficient programs may transfer data
only when necessary. Furthermore, in such high-level pro-
grams, GPU-executable programming code is not compiled
prior to execution, but rather is compiled during execution
(e.g., when such code is needed by the CPU).

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more implementations and, together with the description,
explain these implementations. In the drawings:

FIG. 1 is a diagram of an example network in which sys-
tems and/or methods described herein may be implemented;
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2

FIG. 2 is a diagram of example components of one or more
of the devices of the network depicted in FIG. 1;

FIG. 3 is a diagram of example interactions between
devices of an example portion of the network depicted in FIG.
1

FIG. 4 is a diagram of example functional components of a
technical computing environment that may be used by a client
device of FIGS. 1 and 3;

FIG. 5 is a diagram of example functional components of
an execution engine of the technical computing environment
depicted in FIG. 4;

FIG. 6 is a diagram of example functional components of a
code type determiner depicted in FIG. 5;

FIG. 7 is a diagram of example program code that may be
implemented by the execution engine of FIGS. 4 and 5; and

FIGS. 8-10 are flow charts of an example process for iden-
tifying and translating program code executable by a GPU
according to implementations described herein.

DETAILED DESCRIPTION

The following detailed description refers to the accompa-
nying drawings. The same reference numbers in different
drawings may identify the same or similar elements. Also, the
following detailed description does not limit the invention.

Overview

Systems and/or methods described herein may identify and
translate programming (or program) code executable by a
GPU. The program code may include program code gener-
ated by a technical computing environment (described
herein). The program code may be compiled to an assembly
code (e.g., that may be understood by the GPU) that is
executed by the GPU with particular thread allocation poli-
cies. Examples of such program code include: element-wise
operations performed on large arrays, where each thread of
the GPU operates on a single element of the overall array;
parallel-for loops where each iteration of the parallel-for loop
executes on a different thread of the GPU (thus many itera-
tions may execute simultaneously); large-scale numeric func-
tions (e.g., matrix division, fast Fourier transforms, matrix
multiplication, etc.); etc.

In one example implementation, the systems and/or meth-
ods may receive program code created using a technical com-
puting environment, and may receive size and type informa-
tion associated with inputs to the program code. The systems
and/or methods may perform a static analysis of the program
code to identify portions of the program code, and may deter-
mine, prior to execution of the program code and based on the
input size and type information, a first portion of the program
code to be executed by a graphical processing unit (GPU).
The systems and/or methods may determine, prior to execu-
tion of the program code and based on the input size and type
information, a second portion of the program code to be
executed by a central processing unit (CPU), and may com-
pile the first portion of the program code and the second
portion of the program code. The systems and/or methods
may provide, to the GPU for execution, the compiled first
portion of the program code, and may provide, to the CPU for
execution, the compiled second portion of the program code.

The terms a “portion” or a “program portion,” as used
herein, are to be broadly interpreted to include contiguous
portions of program code and/or non-contiguous portions of
program code.

Example Network Arrangement

FIG. 1 is a diagram of an example network 100 in which
systems and/or methods described herein may be imple-
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mented. As illustrated, network 100 may include a client
device 110 interconnected with one or more server devices
120 (e.g., that include GPUs 130 and/or CPUs 140) via a
network 150. Components of network 100 may interconnect
via wired and/or wireless connections. A single client device
110, two server devices 120, a single GPU 130, a single CPU
140, and a single network 150 have been illustrated in FIG. 1
for simplicity. In practice, there may be more client devices
110, server devices 120, GPUs 130, CPUs 140, and/or net-
works 150. In one example implementation, server devices
120 and network 150 may be omitted, and GPU(s) 130 and/or
CPU(s) 140 may be provided within client device 110 or
attached locally to client device 110. In other implementa-
tions, GPU 130 and CPU 140 may be included in a single
server device 120.

Client device 110 may include one or more devices that are
capable of communicating with server devices 120 via net-
work 150. For example, client device 110 may include a
laptop computer, a personal computer, a tablet computer, a
desktop computer, and/or other computation and/or commu-
nication devices.

In one example implementation, client device 110 may
receive or generate program code created using a TCE (e.g.,
provided in client device 110 or another device), and may
receive size and type information associated with inputs to the
program code. Client device 110 may perform a static analy-
sis of the program code to identify portions of the program
code, and may determine, prior to execution of the program
code and based on the input size and type information, a first
portion of the program code to be executed by GPU 130.
Client device 110 may determine, prior to execution of the
program code and based on the input size and type informa-
tion, a second portion of the program code to be executed by
CPU 140, and may compile the first portion of the program
code and the second portion of the program code. Client
device 110 may provide, to GPU 130 for execution, the com-
piled first portion of the program code, and may provide, to
CPU 140 for execution, the compiled second portion of the
program code.

Server device 120 may include one or more server devices,
or other types of computation or communication devices, that
gather, process, and/or provide information in a manner
described herein. Server device 120 may include a device that
is capable of communicating with client device 110 (e.g., via
network 150). In one example, server device 120 may include
one or more laptop computers, personal computers, worksta-
tion computers, etc.

GPU 130 may include one or more specialized micropro-
cessors that offload and accelerate three-dimensional or two-
dimensional processing, such as graphics rendering, from a
microprocessor. GPU 130 may include a highly parallel struc-
ture that makes GPU 130 more effective than general-purpose
CPUs for a range of complex algorithms. In one example
implementation, GPU 130 may receive the compiled first
portion of the program code (e.g., compiled GPU-executable
code) from client device 110, and may execute the compiled
first portion of the program code to produce results. GPU 130
may provide the results to client device 110.

CPU 140 may include one or more processors, micropro-
cessors, or other types of processing units that may interpret
and execute instructions. In one example implementation,
CPU 140 may receive the compiled second portion of the
program code (e.g., compiled CPU-executable code) from
client device 110, and may execute the compiled second
portion of the program code to produce results. CPU 140 may
provide the results to client device 110.
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Network 150 may include a local area network (LAN), a
wide area network (WAN), a metropolitan area network
(MAN), a telephone network, such as the Public Switched
Telephone Network (PSTN), an intranet, the Internet, an opti-
cal fiber (or fiber optic)-based network, a cable television
network, a satellite television network, or a combination of
networks.

Although FIG. 1 shows example components of network
100, in other implementations, network 100 may include
fewer components, different components, differently
arranged components, and/or additional components than
those depicted in FIG. 1. Alternatively, or additionally, one or
more components of network 100 may perform one or more
othertasks described as being performed by one or more other
components of network 100.

Example Device Architecture

FIG. 2 is an example diagram of a device 200 that may
correspond to one or more of the devices of network 100. As
illustrated, device 200 may include a bus 210, a processing
unit 220, a main memory 230, a read-only memory (ROM)
240, a storage device 250, an input device 260, an output
device 270, and/or a communication interface 280. Bus 210
may include a path that permits communication among the
components of device 200.

Processing unit 220 may include one or more processors,
microprocessors, or other types of processing units that may
interpret and execute instructions. Main memory 230 may
include one or more random access memories (RAMs) or
other types of dynamic storage devices that may store infor-
mation and instructions for execution by processing unit 220.
ROM 240 may include one or more ROM devices or other
types of static storage devices that may store static informa-
tion and/or instructions for use by processing unit 220. Stor-
age device 250 may include a magnetic and/or optical record-
ing medium and its corresponding drive.

Input device 260 may include a mechanism that permits a
user to input information to device 200, such as a keyboard, a
mouse, a pen, a microphone, voice recognition and/or bio-
metric mechanisms, a remote control, a touch screen, etc.
Output device 270 may include a mechanism that outputs
information to the user, including a display, a printer, a
speaker, etc. Communication interface 280 may include any
transceiver-like mechanism that enables device 200 to com-
municate with other devices, networks, and/or systems. For
example, communication interface 280 may include mecha-
nisms for communicating with another device or system via a
network.

As described herein, device 200 may perform certain
operations in response to processing unit 220 executing soft-
ware instructions contained in a computer-readable medium,
such as main memory 230. A computer-readable medium
may be defined as a physical or logical memory device. A
logical memory device may include memory space within a
single physical memory device or spread across multiple
physical memory devices. The software instructions may be
read into main memory 230 from another computer-readable
medium, such as storage device 250, or from another device
via communication interface 280. The software instructions
contained in main memory 230 may cause processing unit
220 to perform processes described herein. Alternatively,
hardwired circuitry may be used in place of or in combination
with software instructions to implement processes described
herein. Thus, implementations described herein are not lim-
ited to any specific combination of hardware circuitry and
software.
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Although FIG. 2 shows example components of device
200, in other implementations, device 200 may include fewer
components, different components, differently arranged
components, and/or additional components than depicted in
FIG. 2. Alternatively, or additionally, one or more compo-
nents of device 200 may perform one or more other tasks
described as being performed by one or more other compo-
nents of device 200.

Example Network Interactions

FIG. 3 is a diagram of example interactions between
devices of an example portion 300 of network 100. As illus-
trated, example network portion 300 may include client
device 110, server device 120 (with GPU 130), and server
device 120 (with CPU 140). Client device 110, server devices
120, GPU 130, and CPU 140 may include the features
described above in connection with one or more of FIGS. 1
and 2.

As further shown in FIG. 3, client device 110 may include
aTCE310and a library 320. In one implementation, TCE 310
and/or library 320 may be provided within a computer-read-
able medium of client device 110 (e.g., in ROM 240 and/or
storage device 250). In other implementations, TCE 310 and/
or library 320 may be provided in another device that is
accessible by client device 110 (e.g., via communication
interface 280).

TCE 310 may include hardware or a combination of hard-
ware and software that provides a computing environment
that allows users to perform tasks related to disciplines, such
as, but not limited to, mathematics, science, engineering,
medicine, business, etc., more efficiently than if the tasks
were performed in another type of computing environment,
such as an environment that required the user to develop code
in a conventional programming language, such as C++, C,
Fortran, Pascal, etc. In one implementation, TCE 310 may
include a dynamically-typed programming language (e.g.,
the M language or MATLAB® language) that can be used to
express problems and/or solutions in mathematical notations.
For example, TCE 310 may use an array as a basic element,
where the array may not require dimensioning. In addition,
TCE 310 may be adapted to perform matrix and/or vector
formulations that can be used for data analysis, data visual-
ization, application development, simulation, modeling,
algorithm development, etc. These matrix and/or vector for-
mulations may be used in many areas, such as statistics,
image processing, signal processing, control design, life sci-
ences modeling, discrete event analysis and/or design, state
based analysis and/or design, etc.

TCE 310 may further provide mathematical functions and/
or graphical tools (e.g., for creating plots, surfaces, images,
volumetric representations, etc.). In one implementation,
TCE 310 may provide these functions and/or tools using
toolboxes (e.g., toolboxes for signal processing, image pro-
cessing, data plotting, parallel processing, etc.). In another
implementation, TCE 310 may provide these functions as
block sets. In still another implementation, TCE 310 may
provide these functions in another way, such as via a library,
etc.

TCE 310 may be implemented as a text-based environment
(e.g., MATLAB® software; Octave; Python; Comsol Script;
MATRIXx from National Instruments; Mathematica from
Wolfram Research, Inc.; Mathcad from Mathsoft Engineer-
ing & Education Inc.; Maple from Maplesoft; Extend from
Imagine That Inc.; Scilab from The French Institution for
Research in Computer Science and Control (INRIA); Vir-
tuoso from Cadence; Modelica or Dymola from Dynasim;
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etc.), a graphically-based environment (e.g., Simulink® soft-
ware, Stateflow® software, SimEvents™ software, etc., by
The MathWorks, Inc.; VisSim by Visual Solutions; Lab-
View® by National Instruments; Dymola by Dynasim; Soft-
WIRE by Measurement Computing; WiT by DALSA
Coreco; VEE Pro or SystemVue by Agilent; Vision Program
Manager from PPT Vision; Khoros from Khoral Research;
Gedae by Gedae, Inc.; Scicos from (INRIA); Virtuoso from
Cadence; Rational Rose from IBM; Rhopsody or Tau from
Telelogic; Ptolemy from the University of California at Ber-
keley; aspects of a Unified Modeling Language (UML) or
SysML environment; etc.), or another type of environment,
such as a hybrid environment that includes one or more of the
above-referenced text-based environments and one or more
of the above-referenced graphically-based environments.

Library 320 may include hardware or a combination of
hardware and software that may operate with TCE 310 to
perform certain operations. For example, in one implemen-
tation, library 320 may include functions to perform certain
operations (e.g., signal processing, image processing, parallel
programming, data display, etc.) in a text-based environment.
In another implementation, library 320 may include graphical
representations (e.g., blocks, icons, images, etc.) to perform
certain operations in a graphically-based environment (e.g., a
gain block, a source block, a filter block, a discrete event
generator block, etc.). In still other implementations, library
320 may perform other operations using text, graphics, etc.
Library 320 may include code segments or blocks that may be
used to help allocate code to a GPU or CPU and to perform
desired operations on the GPU or CPU, such as matched
filtering, fast Fourier transforms (FFTs), image processing,
etc.

In one example implementation, client device 110 may
receive (or generate) program code using TCE 310, and may
receive size and type information associated with inputs to the
program code. Client device 110 may perform a static analy-
sis of the program code to identify portions of the program
code, and may determine, prior to execution of the program
code and based on the input size and type information, a first
portion of the program code to be executed by GPU 130.
Client device 110 may determine, prior to execution of the
program code and based on the input size and type informa-
tion, a second portion of the program code to be executed by
CPU 140. Client device 110 may compile the first portion of
the program code to produce compiled GPU-executable code
330 (e.g., assembly code that may be understood by GPU
130), and may compile the second portion of the program
code to produce compiled CPU-executable code 340 (e.g.,
assembly code that may be understood by CPU 140). As
shown in FIG. 3, client device 110 may provide, to GPU 130
for execution, compiled GPU-executable code 330, and may
provide, to CPU 140 for execution, compiled CPU-execut-
able code 340.

GPU 130 may receive compiled GPU-executable code 330
from client device 110, and may execute compiled GPU-
executable code 330 to produce results. GPU 130 may pro-
vide the results to client device 110. CPU 140 may receive
compiled CPU-executable code 340 from client device 110,
and may execute compiled CPU-executable code 340 to pro-
duce results. CPU 140 may provide the results to client device
110.

Although FIG. 3 shows example devices of network por-
tion 300, in other implementations, network portion 300 may
include fewer devices, different devices, differently arranged
devices, and/or additional devices than depicted in FIG. 3.
Alternatively, or additionally, one or more devices of network
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portion 300 may perform one or more other tasks described as
being performed by one or more other devices of network
portion 300.

Example Technical Computing Environment

FIG. 4 is a diagram of example functional components
TCE 310. In one implementation, the functions described in
connection with FIG. 4 may be performed by one or more
components of device 200 (FIG. 2). As shown in FIG. 4, TCE
310 may include a block diagram editor 410, graphical enti-
ties 420, blocks 430, and/or an execution engine 440.

Block diagram editor 410 may include hardware or a com-
bination of hardware and software that may graphically
specify models of dynamic systems. In one implementation,
block diagram editor 410 may permit a user to perform
actions, such as construct, edit, display, annotate, save, and/or
print a graphical model (e.g., a block diagram that visually
and/or pictorially represents a dynamic system). In another
implementation, block diagram editor 410 may permit a user
to create and/or store data relating to graphical entities 420.

A textual interface with a set of commands may be pro-
vided to permit interaction with block diagram editor 410. A
user may write scripts that perform automatic editing opera-
tions on a model using the textual interface. For example, the
textual interface may provide a set of windows that may act as
a canvas for the model, and may permit user interaction with
the model. A model may include one or more windows
depending on whether the model is partitioned into multiple
hierarchical levels.

Graphical entities 420 may include hardware or a combi-
nation of hardware and software that may provide entities
(e.g., signal lines, buses, etc.) that represent how data may be
communicated between functional and/or non-functional
units and blocks 430 of a model. Blocks 430 may include
fundamental mathematical elements of a block diagram
model. In one implementation, graphical entities 420 and/or
blocks 430 may be moved from library 320 to block diagram
editor 410 by a user.

Execution engine 440 may include hardware or a combi-
nation of hardware and software that may process a graphical
model to produce simulation results, may convert the graphi-
cal model into executable code, and/or may perform other
analyses and/or related tasks. In one implementation, for a
block diagram graphical model, execution engine 440 may
translate the block diagram into executable entities (e.g., units
of execution) following the layout of the block diagram. The
executable entities may be compiled and/or executed on a
device (e.g., client device 110) to implement the functionality
specified by the model. Further details of execution engine
440 are provided below in connection with, for example,
FIGS. 5 and 6.

Although FIG. 4 shows example functional components of
TCE 310, in other implementations, TCE 310 may include
fewer functional components, different functional compo-
nents, differently arranged functional components, and/or
additional functional components than depicted in FIG. 4.
Alternatively, or additionally, one or more functional compo-
nents of TCE 310 may perform one or more other tasks
described as being performed by one or more other functional
components of TCE 310.

Example Execution Engine
FIG. 5 is a diagram of example functional components of

execution engine 440 of TCE 310. In one implementation, the
functions described in connection with FIG. 5 may be per-
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formed by one or more components of device 200 (FIG. 2). As
shown in FIG. 5, execution engine 440 may include a code
type determiner 500, a GPU compiler 510, and a CPU com-
piler 520. As further shown in FIG. 5, the functional compo-
nents of execution engine 440 may interact with GPU 130,
CPU 140, and/or library 320. GPU 130, CPU 140, and library
320 may include the features described above in connection
with one or more of FIGS. 1-4.

Code type determiner 500 may include hardware or a com-
bination of hardware and software that may receive TCE code
530 (e.g., generated by TCE 310) and may receive, from
library 320, size and/or type information 540 associated with
input variables of TCE code 530. TCE code 530 may be
program code that includes portion(s) more efficiently
executed by GPU 130, as compared to executing the portion
(s) on CPU 140, and portion(s) more efficiently executed by
CPU 140. In one example, input size/type information 540
may include inputs to functions of TCE code 530. Code type
determiner 500 may determine which portions of TCE code
530 are more efficiently executed by GPU 130, and may
determine which portions of TCE code 530 are more effi-
ciently executed by CPU 140. Code type determiner 500 may
make these determinations prior to execution of TCE code
530. Code type determiner 500 may also make these deter-
minations on portions of TCE code 530 that have not been
executed (e.g., even though other portions of TCE code 530
have been executed). In one implementation, code type deter-
miner 500 may utilize a static analysis (e.g., an abstract syn-
tax tree to break TCE code 530 into recognizable portions)
and input size/type information 540 to determine if a portion
of TCE code 530 is more efficiently executed by GPU 130 or
more efficiently executed by CPU 140.

In one example implementation, code type determiner 500
may compare a size (e.g., of variables) of each portion of TCE
code 530 to a size threshold, and may compare a degree of
parallelism (e.g., how many parallel constructs are included)
of each portion of TCE code 530 to a degree of parallelism
threshold. For example, with regard to the comparison to the
size threshold, code type determiner 500 may look at a por-
tion of TCE code 530, may inspect the memory defined and
used in that portion of TCE code 530, may compare those
sizes heuristically to some thresholds, and may act appropri-
ately. The size threshold and/or the degree of parallelism
threshold may be automatically set by code type determiner
500 based on a variety of factors, such as a matrix size of each
portion of TCE code 530, whether GPU 130 or CPU 140 will
execute each portion of TCE code 530 faster, a predetermined
degree of parallelism for each portion of TCE code 530, etc.
Alternatively, or additionally, the size threshold and/or the
degree of parallelism threshold may be manually set and/or
adjusted by a user of client device 110.

Code type determiner 500 may determine which portions
of TCE code 530 are more efficiently executed by GPU 130
based on the comparisons to the size threshold and/or the
degree of parallelism threshold. For example, code type
determiner 500 may determine that large-scale numeric func-
tions are more efficiently executed by GPU 130 based on the
comparisons. Similarly, code type determiner 500 may deter-
mine which portions of TCE code 530 are more efficiently
executed by CPU 140 based on the comparisons to the size
threshold and/or the degree of parallelism threshold. As fur-
ther shown in FIG. 5, code type determiner 500 may provide,
to GPU compiler 510, the portion(s) of TCE code 530 deter-
mined to be more efficiently executed by GPU 130 (as indi-
cated by reference number 550), and may provide, to CPU
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compiler 520, the portion(s) of TCE code 530 determined to
be more efficiently executed by CPU 140 (as indicated by
reference number 560).

GPU compiler 510 may include hardware or a combination
of hardware and software that may receive portion(s) 550 of
TCE code 530, which have been determined to be more
efficiently executed by GPU 130 than CPU 140, and may
replace portion(s) 550 of TCE code 530 with relevant code
that may be executed by GPU 130. In one implementation,
GPU compiler 510 may replace portion(s) 550 of TCE code
530 with compiled GPU-executable code 330 (e.g., assembly
code that may be understood by GPU 130). In one example,
GPU-executable code 330 may be compiled immediately
prior to execution by GPU 130. As shown in FIG. 5, GPU
compiler 510 may provide GPU-executable code 330 to GPU
130 (e.g., for execution). In one example, GPU compiler 510
may include a compiler that produces assembly code for
NVIDIA GPU devices, such as a parallel tread execution
(PTX) compiler.

In one example, GPU compiler 510 may directly generate
GPU-executable code 330 (e.g., PTX code) on the fly. In
contrast, typical arrangements generate C code first, and then
generate PTX code from the C code, which may take an
inordinate amount of time. Thus, GPU compiler 510 may
provide a quicker and easier way for users to produce GPU-
executable code 330 than in typical arrangements.

CPU compiler 520 may include hardware or a combination
of hardware and software that may receive portion(s) 560 of
TCE code 530, which have been determined to be more
efficiently executed by CPU 140 than GPU 130. In one imple-
mentation, CPU compiler 520 may compile portion(s) 560 of
TCE code 530 to produce compiled CPU-executable code
340 (e.g., assembly code that may be understood by CPU
140). As shown in FIG. 5, CPU compiler 520 may provide
CPU-executable code 340 to CPU 140 (e.g., for execution).

As further shown in FIG. 5, library 320 may provide library
information 570 to GPU 130 and CPU 140. Library informa-
tion 570 may include, for example, information describing
which functions are being used by TCE code 530 (e.g., by
GPU-executable code 330 and/or by CPU-executable code
340). GPU 130 and CPU 140 may utilize library information
570 to aid execution of GPU-executable code 330 and CPU-
executable code 340, respectively. GPU 130 and CPU 140
may also share information 580 to aid in execution of GPU-
executable code 330 and CPU-executable code 340, respec-
tively. Information 580 may include, for example, data uti-
lized by GPU-executable code 330 and CPU-executable code
340 during execution.

The arrangement depicted in FIG. 5 may enable portions of
a program (e.g., portions of TCE code 530 that are more
efficiently executed by GPU 130) to be transformed into
program code that may be executed by GPU 130. The
arrangement may also enable other portions of the program
(e.g., portions of TCE code 530 that are more efficiently
executed by CPU 140) to remain intact for execution by CPU
140. Such an arrangement may recognize different portions
of the program and compile them appropriately, and may
replace a set of CPU calls (e.g., portions of TCE code 530 that
are more efficiently executed by GPU 130) with GPU calls
that are identical in behavior, yet are executed faster by GPU
130.

Although FIG. 5 shows example functional components of
execution engine 440, in other implementations, execution
engine 440 may include fewer functional components, difter-
ent functional components, differently arranged functional
components, and/or additional functional components than
depicted in FIG. 5. Alternatively, or additionally, one or more
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functional components of execution engine 440 may perform
one or more other tasks described as being performed by one
or more other functional components of execution engine
440.

FIG. 6 is a diagram of example functional components of
code type determiner 500 of execution engine 440. In one
implementation, the functions described in connection with
FIG. 6 may be performed by one or more components of
device 200 (FIG. 2). As shown in FIG. 6, code type determiner
500 may include a static analyzer 600 and a dynamic thresh-
old component 610.

Static analyzer 600 may include hardware or a combina-
tion of hardware and software that may receive TCE code
530, and may utilize a static analysis (e.g., an abstract syntax
tree) to break TCE code 530 into recognizable portions. For
example, as shown in FIG. 6, static analyzer 600 may utilize
the static analysis to break TCE code 530 into portion(s) of
TCE code, as indicated by reference number 620. Static ana-
lyzer 600 may provide portion(s) 620 of TCE code 530 to
dynamic threshold component 610.

Dynamic threshold component 610 may include hardware
or a combination of hardware and software that may receive
portion(s) 620 of TCE code 530 from static analyzer 600, may
receive input size/type information 540 (e.g., from library
320), and may receive one or more thresholds 630. Threshold
(s) 630 may include the size threshold and/or the degree of
parallelism threshold described above in connection with
FIG. 5. Dynamic threshold component 610 may utilize input
size/type information 540 and threshold(s) 630 to determine
if a portion 620 of TCE code 530 is more efficiently executed
by GPU 130 or more efficiently executed by CPU 140. In one
implementation, dynamic threshold component 610 may
retrieve input size/type information 540 and threshold(s) 630
from a data store, such as a file or a data structure.

In one example implementation, dynamic threshold com-
ponent 610 may compare a size (e.g., of variables) of each
portion 620 of TCE code 530 to the size threshold, and may
compare a degree of parallelism of each portion 620 of TCE
code 530 to the degree of parallelism threshold. Dynamic
threshold component 610 may determine which portions 620
of TCE code 530 are more efficiently executed by GPU 130,
or more efficiently executed by CPU 140, based on the com-
parisons to the size threshold and/or the degree of parallelism
threshold. As further shown in FIG. 6, dynamic threshold
component 610 may output portion(s) 550 of TCE code 530
determined to be more efficiently executed by GPU 130, and
may output portion(s) 560 of TCE code 530 determined to be
more efficiently executed by CPU 140. Portion(s) 550 of TCE
code 530 may be provided to GPU compiler 510, and portion
(s) 560 of TCE code 530 may be provided to CPU compiler
520.

Although FIG. 6 shows example functional components of
code type determiner 500, in other implementations, code
type determiner 500 may include fewer functional compo-
nents, different functional components, differently arranged
functional components, and/or additional functional compo-
nents than depicted in FIG. 6. Alternatively, or additionally,
one or more functional components of code type determiner
500 may perform one or more other tasks described as being
performed by one or more other functional components of
code type determiner 500.

Example Program Code
FIG. 7 is a diagram of example program code 700 that may

be implemented by execution engine 440. In one implemen-
tation, program code 700 may include portions of program



US 9,122,488 B2

11

code (e.g., TCE code 530) created using a TCE. As shown in
FIG. 7, program code 700 may include a portion 710 (e.g.,
serial code) that may be more efficiently executed by CPU
140, and may include a portion 720 (e.g., parallel code) that
may be more efficiently executed by GPU 130. Program code
700 may include other portions 730 and 750 (e.g., serial code)
that may be more efficiently executed by CPU 140, and may
include another portion 740 (e.g., parallel-for code) that may
be more efficiently executed by GPU 130.

In one implementation, execution engine 440 (e.g., code
type determiner 500) may determine that portions 710, 730,
and 750 of program code 700 are more efficiently executed by
CPU 140, and may provide portions 710, 730, and 750 of
program code 700 to CPU 140 for execution. Execution
engine 440 (e.g., code type determiner 500) may determine
that portions 720 and 740 of program code 700 are more
efficiently executed by GPU 130, and may provide portions
720 and 740 of program code 700 to GPU 130 for execution.

Although FIG. 7 shows example instructions of program
code 700, in other implementations, program code 700 may
include fewer instructions, different instructions, differently
arranged instructions, and/or additional instructions than
depicted in FIG. 7.

Example Process

FIGS. 8-10 are flow charts of an example process 800 for
identifying and translating program code executable by a
GPU according to implementations described herein. In one
implementation, process 800 may be performed by client
device 110. In other implementations, process 800 may be
performed by another device or a group of devices separate
from or including client device 110.

As shown in FIG. 8, process 800 may include receiving
technical computing environment (TCE) code (block 810),
and receiving size and/or type information associated with
inputs to the TCE code (block 820). For example, in imple-
mentations described above in connection with FIG. 5, code
type determiner 500 of client device 110 may receive TCE
code 530 (e.g., generated by TCE 310) and may receive, from
library 320, size and/or type information 540 associated with
input variables of TCE code 530. TCE code 530 may be
program code that includes portion(s) more efficiently
executed by GPU 130 and portion(s) more efficiently
executed by CPU 140. In one example, input size/type infor-
mation 540 may include inputs to functions of TCE code 530.

As further shown in FIG. 8, process 800 may include
performing a static analysis of the TCE code to identify
portions of the TCE code (block 830), and determining, prior
to execution and based on the input size/type information,
portion(s) of the TCE code that are more efficiently executed
by a GPU (block 840). For example, in implementations
described above in connection with FIG. 5, code type deter-
miner 500 may determine which portions of TCE code 530
are more efficiently executed by GPU 130, and may make this
determination prior to execution of TCE code 530. In one
example, code type determiner 500 may utilize a static analy-
sis (e.g., an abstract syntax tree to break TCE code 530 into
recognizable portions) and input size/type information 540 to
determine if a portion of TCE code 530 is more efficiently
executed by GPU 130.

Returning to FIG. 8, process 800 may include determining,
prior to execution and based on the input size/type informa-
tion, portion(s) of the TCE code that are more efficiently
executed by a CPU (block 850), and compiling the portions of
the TCE code that are executable by the GPU and the CPU
(block 860). For example, in implementations described
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above in connection with FIG. 5, code type determiner 500
may determine which portions of TCE code 530 are more
efficiently executed by CPU 140, and may make this deter-
mination prior to execution of TCE code 530. In one example,
code type determiner 500 may utilize a static analysis (e.g., an
abstract syntax tree to break TCE code 530 into recognizable
portions) and input size/type information 540 to determine if
a portion of TCE code 530 is more efficiently executed by
CPU 140. Code type determiner 500 may provide, to GPU
compiler 510, the portion(s) of TCE code 530 determined to
be more efficiently executed by GPU 130 (as indicated by
reference number 550), and may provide, to CPU compiler
520, the portion(s) of TCE code 530 determined to be more
efficiently executed by CPU 140 (as indicated by reference
number 560). GPU compiler 510 may receive portion(s) 550
of TCE code 530, and may replace portion(s) 550 of TCE
code 530 with compiled GPU-executable code 330 (e.g.,
assembly code that may be understood by GPU 130). CPU
compiler 520 may receive portion(s) 560 of TCE code 530,
and may compile portion(s) 560 of TCE code 530 to produce
compiled CPU-executable code 340 (e.g., assembly code that
may be understood by CPU 140).

As further shown in FIG. 8, process 800 may include
providing, to the GPU, the compiled portion(s) of the TCE
code executable by the GPU (block 870), and providing, to
the CPU, the compiled portion(s) of the TCE code executable
by the CPU (block 880). For example, in implementations
described above in connection with FIG. 5, GPU compiler
510 may provide GPU-executable code 330 to GPU 130 (e.g.,
for execution). CPU compiler 520 may provide CPU-execut-
able code 340 to CPU 140 (e.g., for execution).

Process blocks 840/850 may include the process blocks
depicted in FIG. 9. As shown in FIG. 9, process blocks 840/
850 may include comparing portion(s) of the TCE code to a
size threshold (block 900), and comparing portion(s) of the
TCE code to a degree of parallelism threshold (block 910).
For example, in implementations described above in connec-
tion with FIG. 5, code type determiner 500 may compare a
size (e.g., of variables) of each portion of TCE code 530 to a
size threshold, and may compare a degree of parallelism (e.g.,
how many parallel constructs are included) of each portion of
TCE code 530 to a degree of parallelism threshold. The size
threshold and/or the degree of parallelism threshold may be
automatically set by code type determiner 500 based on a
variety of factors, such as a matrix size of each portion of TCE
code 530, whether GPU 130 or CPU 140 will execute each
portion of TCE code 530 faster, a predetermined degree of
parallelism for each portion of TCE code 530, etc. Alterna-
tively, or additionally, the size threshold and/or the degree of
parallelism threshold may be manually set and/or adjusted by
a user of client device 110.

As further shown in FIG. 9, process blocks 840/850 may
include determining portion(s) of the TCE code executable by
the GPU based on the comparisons to the size and degree of
parallelism thresholds (block 920), and determining portion
(s) of the TCE code executable by the CPU based on the
comparisons to the size and degree of parallelism thresholds
(block 930). For example, in implementations described
above in connection with FIG. 5, code type determiner 500
may determine which portions of TCE code 530 are more
efficiently executed by GPU 130 based on the comparisons to
the size threshold and/or the degree of parallelism threshold.
For example, code type determiner 500 may determine that
large-scale numeric functions are more efficiently executed
by GPU 130 based on the comparisons. Similarly, code type
determiner 500 may determine which portions of TCE code
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530 are more efficiently executed by CPU 140 based on the
comparisons to the size threshold and/or the degree of paral-
lelism threshold.

Process block 860 may include the process blocks depicted
in FIG. 10. As shown in FIG. 10, process block 860 may
include compiling, with a GPU compiler, portion(s) of the
TCE code executable by the GPU (block 1000), and compil-
ing, with a CPU compiler, portion(s) of the TCE code execut-
able by the CPU (block 1010). For example, in implementa-
tions described above in connection with FIG. 5, GPU
compiler 510 may receive portion(s) 550 of TCE code 530
more efficiently executed by GPU 130, and may compile
portion(s) 550 of TCE code 530 to produce compiled GPU-
executable code 330 (e.g., assembly code that may be under-
stood by GPU 130). CPU compiler 520 may receive portion
(s) 560 of TCE code 530 more efficiently executed by CPU
140, and may compile portion(s) 560 of TCE code 530 to
produce compiled CPU-executable code 340 (e.g., assembly
code that may be understood by CPU 140).

Conclusion

Systems and/or methods described herein may identify and
translate programming (or program) code executable by a
GPU. The program code may include program code gener-
ated by a technical computing environment (described
herein). The program code may be compiled to an assembly
code (e.g., that may be understood by the GPU) that is
executed by the GPU with particular thread allocation poli-
cies.

The foregoing description of implementations provides
illustration and description, but is not intended to be exhaus-
tive or to limit the invention to the precise form disclosed.
Modifications and variations are possible in light of the above
teachings or may be acquired from practice of the invention.

For example, while series of blocks have been described
with regard to FIGS. 8-10, the order of the blocks may be
modified in other implementations. Further, non-dependent
blocks may be performed in parallel.

It will be apparent that example aspects, as described
above, may be implemented in many different forms of soft-
ware, firmware, and hardware in the implementations illus-
trated in the figures. The actual software code or specialized
control hardware used to implement these aspects should not
be construed as limiting. Thus, the operation and behavior of
the aspects were described without reference to the specific
software code—it being understood that software and control
hardware could be designed to implement the aspects based
on the description herein.

Further, certain portions of the invention may be imple-
mented as a “component” that performs one or more func-
tions. This component may include hardware, such as a pro-
cessor, an application-specific integrated circuit (ASIC), or a
field-programmable gate array (FPGA), or a combination of
hardware and software.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the invention. In
fact, many of these features may be combined in ways not
specifically recited in the claims and/or disclosed in the speci-
fication.

No element, act, or instruction used in the present applica-
tion should be construed as critical or essential to the inven-
tion unless explicitly described as such. Also, as used herein,
the article “a” is intended to include one or more items. Where
only one item is intended, the term “one” or similar language
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is used. Further, the phrase “based on” is intended to mean
“based, at least in part, on” unless explicitly stated otherwise.

What is claimed is:

1. A device comprising:

a memory to store a plurality of instructions; and

a processor to execute one or more instructions of the

plurality of instructions in the memory to:
receive program code,
receive an input size and type information associated
with inputs to the program code,
determine, prior to execution of the program code and
based on the input size and the type information, a
portion of the program code that is executable by a
graphical processing unit (GPU),
when determining the portion of the program code
that is executable by the GPU, the processor is to
execute the one or more instructions to:
compare portions of the program code to a degree
of parallelism threshold, and
determine the portion of the program code that is
executable by the GPU based on comparing the
portions of the program code to the degree of
parallelism threshold,
determine, prior to execution of the program code and
based on the input size and the type information, a
portion of the program code that is executable by a
central processing unit (CPU),
the portion of the program code that is executable by
the CPU being different than the portion of the
program code that is executable by the GPU,
compile the portion of the program code that is execut-
able by the GPU to create a compiled GPU-executable
portion of the program code,
compile the portion of the program code that is execut-
able by the CPU to create a compiled CPU-executable
portion of the program code,
provide, to the GPU for execution, the compiled GPU-
executable portion of the program code, and
provide, to the CPU for execution, the compiled CPU-
executable portion of the program code.

2. The device of claim 1, where the portion of the program
code, that is executable by the GPU, includes parallel code,
and

where the portion of the program code, that is executable

by the CPU, includes serial code.

3. The device of claim 1, further including:

the GPU, and

the CPU.

4. The device of claim 1, where, when determining the
portion of the program code that is executable by the CPU, the
processor is to execute the one or more instructions to:

compare a plurality of portions of the program code to a

size threshold, and

determine the portion of the program code that is execut-

able by the CPU based on comparing the plurality of
portions of the program code to the size threshold.

5. A non-transitory computer-readable medium storing
instructions, the instructions comprising:

one or more instructions which, when executed by a com-

puting device, cause the computing device to receive a
program;

one or more instructions which, when executed by the

computing device, cause the computing device to
receive an input size and type information associated
with inputs to the program;

one or more instructions which, when executed by the

computing device, cause the computing device to deter-
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mine, based on the input size and the type information, a
first portion of the program and a second portion of the
program,
the first portion of the program being different than the
second portion of the program,
the one or more instructions to determine the first por-
tion of the program and the second portion of the
program including:
one or more instructions to compare portions of the
program to a degree of parallelism threshold, and
one or more instructions to determine the first portion
of the program and the second portion of the pro-
gram based on comparing the portions of the pro-
gram to the degree of parallelism threshold;
one or more instructions which, when executed by the
computing device, cause the computing device to com-
pile the first portion of the program to create a compiled
first portion of the program;
one or more instructions which, when executed by the
computing device, cause the computing device to com-
pile the second portion of the program to create a com-
piled second portion of the program,
the second portion of the program being compiled for
execution by first hardware that is different than sec-
ond hardware for which the first portion of the pro-
gram is compiled; and
one or more instructions which, when executed by the
computing device, cause the computing device to pro-
vide for execution:
the compiled first portion of the program, and
the compiled second portion of the program.
6. The non-transitory computer-readable medium of claim
5, where the first portion of the program is executable by a
graphical processing unit (GPU), and
where the second portion of the program is executable by a
central processing unit (CPU).
7. The non-transitory computer-readable medium of claim
5, where the one or more instructions which cause the com-
puting device to compile the first portion of the program
include:
one or more instructions which, when executed by the
computing device, cause the computing device to com-
pile the first portion of the program using a graphical
processing unit (GPU) compiler, and
where the one or more instructions which cause the com-
puting device to compile the second portion of the pro-
gram include:
one or more instructions which, when executed by the
computing device, cause the computing device to
compile the second portion of the program using a
central processing unit (CPU) compiler.
8. The non-transitory computer-readable medium of claim
5, where the one or more instructions which cause the com-
puting device to provide the compiled first portion of the
program and the compiled second portion of the program for
execution include:
one or more instructions which, when executed by the
computing device, cause the computing device to pro-
vide the compiled first portion of the program to a
graphical processing unit (GPU) for execution.
9. The non-transitory computer-readable medium of claim
5, where the one or more instructions which cause the com-
puting device to provide the compiled first portion of the
program and the compiled second portion of the program for
execution include:
one or more instructions which, when executed by the
computing device, cause the computing device to pro-
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vide the compiled second portion of the program to a
central processing unit (CPU) for execution.

10. The non-transitory computer-readable medium of
claim 5, where the instructions further comprise:

one or more instructions which, when executed by the

computing device, cause the computing device to per-
form a static analysis of the program to identify a plu-
rality of portions of the program, and

where the one or more instructions to determine the first

portion of the program and the second portion of the

program further include:

one or more instructions to compare the plurality of
portions of the program to a size threshold; and

one or more instructions to determine the first portion of
the program and the second portion of the program
based on comparing the plurality of portions of the
program to the size threshold.

11. The non-transitory computer-readable medium of
claim 5, where the instructions further comprise:

one or more instructions which, when executed by the

computing device, cause the computing device to per-
form a static analysis of the program to identify the
portions of the program.

12. The non-transitory computer-readable medium of
claim 5, where the first portion of the program includes par-
allel code,

where the second portion of the program includes serial

code, and

where the one or more instructions which cause the com-

puting device to provide the compiled first portion of the
program and the compiled second portion of the pro-
gram for execution include:
one or more instructions to provide the compiled first
portion of the program to a graphical processing unit
(GPU) for execution; and
one or more instructions to provide the compiled second
portion of the program to a central processing unit
(CPU) for execution.
13. A method comprising:
receiving a program,
the receiving the program being performed by a com-
puting device;
receiving an input size and type information associated
with inputs to the program,
the receiving the input size and the type information
being performed by the computing device;
determining, prior to execution of the program and based
on the input size and the type information, a first portion
of the program,
the determining the first portion of the program being
performed by the computing device,
determining the first portion of the program including:
comparing portions of the program to a degree of
parallelism threshold, and
determining the first portion of the program based on
comparing the portions of the program to the
degree of parallelism threshold;

determining, prior to execution of the program and based

on the input size and the type information, a second

portion of the program,

the determining the second portion of the program being
performed by the computing device,

the second portion of the program being different than
the first portion of the program,

the second portion of the program being identified for
first hardware different than second hardware identi-
fied for the first portion of the program;
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compiling, using a first compiler, the first portion of the
program to create a compiled first portion of the pro-
gram,
the compiling the first portion of the program being
performed by the computing device;

compiling, using a second compiler, the second portion of

the program to create a compiled second portion of the

program,

the second compiler being different than the first com-
piler,

the compiling the second portion of the program being
performed by the computing device; and

providing, for execution, the compiled first portion of the

program and the compiled second portion of the pro-
gram,
the providing being performed by the computing device.

14. The method of claim 13, where the first portion of the
program includes parallel code, and

where the second portion of the program includes serial

code.

15. The method of claim 13, where the first portion of the
program is executable by a graphical processing unit (GPU),
and

where providing the compiled first portion of the program

and the compiled second portion of the program for

execution includes:

providing the compiled first portion of the program to
the GPU for execution.

16. The method of claim 13, where the second portion of
the program is executable by a central processing unit (CPU),
and

25
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where providing the compiled first portion of the program
and the compiled second portion of the program for
execution includes:

providing the compiled second portion of the program to

5 the CPU for execution.

17. The method of claim 13, where determining the second
portion of the program includes:
comparing portions of the program to a size threshold; and
determining the second portion of the program based on
comparing the portions of the program to the size thresh-
old.
18. The method of claim 13, where providing the compiled
first portion of the program and the compiled second portion
5 of the program for execution includes:
providing, for execution, the compiled first portion of the
program to a graphical processing unit (GPU) of the
computing device; and
providing, for execution, the compiled second portion of

20 the program to a central processing unit (CPU) of the

computing device.
19. The method of claim 13, further comprising:

performing a static analysis of the program to identify the
portions of the program.

20. The device of claim 1, where the processor is to execute
the one or more instructions further to:

perform a static analysis of the program code to identify the
portions of the program code.
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